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Tabiei and Jiang (1999) present an approach in which, through homogenization, a model for a woven
composite material is developed. The model is suitable for implementation in commercial finite element
(FE) packages (to represent a material point). This then enables analysis of structures composed of the
woven composite while providing the local stresses and strains in the woven composite yarns at the FE
material points. Hence, the objective of the paper, in my opinion, is extremely worthwhile. This type of
multi-scale approach to structural analysis shows potential for improving designs, as well as streamlining
the design procedure, for structures composed of advanced materials (such as woven composites).

In developing the model for the woven composite, Tabiei and Jiang (1999) identify a repeating unit cell
(in the plane of the weave) and divide the unit cell into subcells. Each subcell is then homogenized through
the weave’s thickness via iso-stress and iso-strain conditions. The composite is thus represented, at this
point, by a repeating unit cell consisting of an array of two-dimensional subcells, each with effective (homo-
genized) properties (see Fig. 1).

The next step in the model development involves homogenization of the two-dimensional subcells to
obtain the effective constitutive equations for the repeating unit cell (Tabiei and Jiang, 1999, Section 2.2,
p- 2764). Here, the authors state, ... it is assumed that the average in-plane strains and stresses among
subcells have the following relationships ...” (Tabiei and Jiang, 1999, p. 2764), and 16 equations are
presented, which relate the local (subcell) and global (homogenized) stresses and strains in the repeating
unit cell. Although no reference is given, it is my opinion that these equations are, in actuality, the gen-
eralized method of cells (GMC) equations developed by Paley and Aboudi (1992). Figs. 1 and 2 compare
the geometry employed by Tabiei and Jiang with that of GMC, while Table 1 presents the correspondence
between the equations presented by Tabiei and Jiang (1999) and the GMC equations presented by Paley
and Aboudi (1992).
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Fig. 2. Geometry of the GMC presented by Paley and Aboudi (1992, p. 129).

For a few of the numerous examples of investigations that have employed the GMC approach, the
reader is referred to Aboudi (1985, 1986, 1987a,b, 1988, 1989a,b, 1991, 1995, 1996, 1999, 2000), Arnold
et al. (1999), Bednarcyk and Pindera (1996, 1997, 2000a,b), Lissenden and Arnold (1997), Pindera and
Bednarcyk (1999), Robertson and Mall (1994), Wilt and Arnold (1994, 1996), and Wilt et al. (1997). Of
particular interest to the readers of the presently discussed article are Bednarcyk and Pindera (2000a,b), in
which GMC was applied to modeling woven composites. In these papers, analysis begins on the scale of the
individual constituents (fiber and matrix) rather than on the scale of the infiltrated yarns (as is the case in
the presently discussed approach). This eliminates the need for a priori knowledge of homogenized
properties of the infiltrated fiber yarns and provides the fields in the fiber and matrix constituents. These
truly microscale fields are useful for incorporation of microscale features such as fiber-matrix interfacial
debonding, damage, and microfailure criteria. By beginning analysis on the scale of the infiltrated fiber
yarns, features such as these must be incorporated via appropriate transversely isotropic theories, which are
clearly more complex and less widely available than their isotropic counterparts. Finally, in Bednarcyk and
Pindera (2000a,b), homogenization of the three-dimensional woven composite unit cell was performed in
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Table 1
Correspondence between the original GMC equations (Paley and Aboudi, 1992) and the equations of Tabiei and Jiang (1999)
Tabiei and Jiang (1999) GMC (1992)
equation # equation #
(22a) 47
(22b) (46)
(22¢) (48)
(22d) (49)
(22¢) (36)
(221 (35)
(22g) (32)
(23) (61)
(24) (53)
(25) 3)
(26) (56) & (57)
27 (59)
(28) (62)
(29 (62)
(30) (63)

one step via use of the triply periodic version of GMC (Aboudi, 1995). The concept of homogenizing
through the thickness of the woven reinforcement prior to homogenization in the plane of the weave, as
presented by Tabiei and Jiang (1999), is a good idea. I hope that this brief discussion provides the IJSS
readership with some insight into the appropriate credit for the underlying micromechanics equations used
in the paper.

Note added in press

No authors’ closure received.
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